報告題目:Some new regularity results for the Navier-Stokes equations
報告人:周道國
時 間:2023年11月4日上午9:00-10:00
地 點:騰訊會議(會議号:409560672)
摘 要:Two regularity results are established for the Navier-Stokes equations. (1)We consider regularity criteria in endpoint space BMO^{-1} or B^{-1}_{\infty,\infty}. If two velocity components are small in BMO^{-1}, or one velocity component is small in B^{-1}_{\infty,\infty} with other two velocity components being bounded in B^{-1}_{\infty,\infty}.(2)It is shown that if the velocity satisfies that \|u\|_{L_t^p L_x^q}\leq C log^{1/p -}(T-t) with 2/p+3/q=1, then the solution will not blow up. This improves Serrin's criterion by admitting logarithmic type growth.
報告人簡介:周道國,畢業于中科院數學與系統科學研究院應用數學研究所,現為杭州師範大學副教授。研究方向為流體力學中的的偏微分方程,特别是不可壓縮Naiver-Stokes方程。主持了3項國家自然科學基金項目。已在“J. Differential Equations”、“Pacific J. Math.”、“J. Nonlinear Sci. ”、“J. Math. Fluid Mech.”、“J. Math. Sci. (N.Y.)”等期刊上發表數學論文多篇。曾在牛津大學做訪問學者。